
Solution Sheet 2

Exercise 2.1.

Let X be a complete separable metric space. Prove that any probability measure on X is tight.
Hint: A complete, totally bounded set is compact.

Proof. Let µ be a probability measure on X , and fix an ε > 0 with the intention of finding a
compact K ⊂ X such that µ(K) > 1− ε. By separability there exists a countable dense subset (xi)
of X . We define Br(y) as the open ball of radius r centred at y ∈ X , and for any n ∈ N consider
the collection of sets (B 1

n
(xi)). Due to density of the (xi) then this collection covers X and in

particular

µ

( ∞⋃
i=1

B 1
n
(xi)

)
= 1.

Moreover the sequence

µ

(
j⋃

i=1

B 1
n
(xi)

)
is monotonically increasing and convergent to 1 as j → ∞, hence there exists an nj such that

µ

( nj⋃
i=1

B 1
n
(xi)

)
> 1− ε

2n
.

Now we set

A :=
∞⋂
n=1

nj⋃
i=1

B 1
n
(xi)

and wish to show that the closure Ā is the desired K. The first task is to show that Ā is compact;
recall that a complete, totally bounded set is compact. As Ā is a closed subset of a complete metric
space then it is itself complete, so we are only required to show that it is totally bounded. To
show that A is totally bounded we must verify that for every δ > 0, there exists finitely many
y1, . . . , yk ∈ X such that A ⊂

⋃k
i=1Bδ(yi). Observe that for x ∈ A, then x ∈

⋃nj

i=1B 1
n
(xi) for every

n. We choose an n large enough such that 1
n < δ, so that for every xi, B 1

n
(xi) ⊂ Bδ(xi). Thus,

x ∈
nj⋃
i=1

B 1
n
(xi) ⊂

nj⋃
i=1

Bδ(xi)

so one can take k = nj , yi = xi in the definition of totally bounded. The closure of a totally
bounded set is totally bounded, hence Ā is totally bounded and complete so compact. To conclude
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the proof it only remains to show that µ(Ā) > 1− ε, or equivalently that µ(ĀC) < ε. Indeed,

µ(ĀC) ≤ µ(AC)

= µ

 ∞⋃
n=1

( nj⋃
i=1

B 1
n
(xi)

)C


≤
∞∑
n=1

µ

( nj⋃
i=1

B 1
n
(xi)

)C


<

∞∑
n=1

ε

2n

= ε.

Exercise 2.2.

Let µ, ν be two probability measures supported on an interval [a, b] ⊂ R. Show that moments
separate the measures, that is if for every non-negative integer k we have that∫ b

a
xkdµ =

∫ b

a
xkdν

then µ = ν.

Proof. Recall Theorem 2.2.2 of the notes, which asserts that if for every bounded and uniformly
continuous function f : [a, b] → R we have∫ b

a
fdµ =

∫ b

a
fdν

then µ = ν. Every continuous function on the compact set [a, b] is bounded and uniformly contin-
uous hence it is sufficient to verify this condition for only continuous f which we now fix. By the
Stone-Weierstrass Theorem there exists a sequence of polynomials (pn) such that pn → f uniformly
on [a, b]. From the assumption that the moments of the measures agree, we have that∫ b

a
pndµ =

∫ b

a
pndν (1)

and now claim that
∫ b
a pndµ →

∫ b
a fdµ as n → ∞. Indeed this follows from the Dominated

Convergence Theorem with dominating function |f |+ 1 which exceeds pn for n large enough such
that supx∈[a,b]∥pn(x) − f(x)∥ < 1. Of course the same is true for ν, but referring to (1) then∫ b
a pndµ→

∫ b
a fdν as n→ ∞ as well, so by uniqueness of limits we have proven that∫ b

a
fdµ =

∫ b

a
fdν

as required to demonstrate that µ = ν.
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Exercise 2.3.

Let µ, ν be two probability measures on R such that for every non-negative integer k, we have
that ∫

R
xkdµ =

∫
R
xkdν =: αk.

In addition suppose that there exists an r > 0 such that for all s ∈ [0, r], the infinite sum

∞∑
k=1

αks
k

k!

is well defined in R. Demonstrate the following:

1. Defining βk :=
∫
R|x|

kdµ, we have that for any s ∈ (0, r), βks
k

k! → 0 as k → ∞;

2. You are given that for any x ∈ R,∣∣∣∣∣eix −
n∑

k=0

(ix)k

k!

∣∣∣∣∣ ≤ |x|n+1

(n+ 1)!
. (2)

Denote the characteristic function of µ by ϕ, that is for any t ∈ R,

ϕ(t) :=

∫
R
eitxdµ.

Then for any t ∈ R and h ∈ R with |h| < r,

ϕ(t+ h) =
∞∑
k=0

hk

k!

∫
R
(ix)keitxdµ.

3. Further denote
(
d
dt

)k
ϕ = ϕ(k). Then

ϕ(k)(t) =

∫
R
(ix)keitxdµ.

Hint: Use (2) with n = 1.

4. Let ψ denote the characteristic function of ν. Show that ϕ = ψ and hence µ = ν.

Proof. We prove the steps in turn:

1. The idea is to use that α2k = β2k and that the convergence is known for α. Therefore it

is sufficient to show that
β2k−1s

2k−1

(2k−1)! → 0 as k → ∞. Using the simple inequality |x|2k−1 ≤
1 + |x|2k,

β2k−1s
2k−1

(2k − 1)!
≤
(∫

R 1 + |x|2kdµ
)
s2k−1

(2k − 1)!
=

s2k−1

(2k − 1)!
+
β2ks

2k−1

(2k − 1)!
.

It is standard that
s2k−1

(2k − 1)!
→ 0
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as k → ∞ hence the first term vanishes, and as β2k = α2k in the second term it is sufficient
to show that for large k,

s2k−1

(2k − 1)!
≤ r2k

2k!
.

This is equivalent to

2k
(s
r

)2k−1
≤ r

which must be true for large k as the left hand side converges to zero as k → ∞.

2. For any x ∈ R, we use that |eitx| = 1 and (2) for hx to see that∣∣∣∣∣eitx
(
eihx −

n∑
k=0

(ihx)k

k!

)∣∣∣∣∣ ≤ |hx|n+1

(n+ 1)!
.

In particular,∣∣∣∣∣
∫
R
eitx

(
eihx −

n∑
k=0

(ihx)k

k!

)
dµ

∣∣∣∣∣ ≤
∫
R

∣∣∣∣∣eitx
(
eihx −

n∑
k=0

(ihx)k

k!

)∣∣∣∣∣ dµ
≤
∫
R

|hx|n+1

(n+ 1)!
dµ

=
|h|n+1βn+1

(n+ 1)!
.

By the first part of the exercise, this bound vanishes as n→ ∞. Therefore the limit as n→ ∞
of the left hand side exists and is zero, which we rearrange to give that

ϕ(t+ h) =

∞∑
k=0

∫
R

(ihx)k

k!
eitxdµ =

∞∑
k=0

hk

k!

∫
R
(ix)keitxdµ

as required.

3. Following the hint we will look to use the inequality

∣∣eix − 1− ix
∣∣ ≤ x2

2
. (3)

We consider the base case, wishing to prove that

ϕ(1)(t) =

∫
R
ixeitxdµ.

We would be successful if we can verify that

ϕ(t+ s)− ϕ(t)

s
−
∫
R
ixeitxdµ (4)

tends to zero as s does. We rewrite this expression as∫
R

ei(t+s)x − eitx

s
− isxeitx

s
dµ =

∫
R
eitx

eisx − 1− isx

s
dµ.
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Due to (3) we have that
∣∣eisx − 1− isx

∣∣ ≤ (sx)2

2 and in particular∣∣∣∣eitx eisx − 1− isx

s

∣∣∣∣ ≤ sx2

2

so the integrand converges to 0 with s. Clearly the function g(x) = x2 dominates for small
s, and is integrable as second moments of µ are assumed, so (4) is shown by the Dominated
Convergence Theorem. Higher derivatives are shown similarly by induction, so we conclude
here.

4. Of course one can make all of the same arguments for ψ and ν in place of ϕ and µ. Combining
steps two and three we have that for any t ∈ R and |h| < r,

ϕ(t+ h) =
∞∑
k=0

hk

k!
ϕ(k)(t) (5)

and similarly for ψ. We first argue that for all |s| < r, ϕ(s) = ψ(s). For this we consider
t = 0, and observe from step three that ϕ(k)(0) =

∫
R(ix)

kdµ hence is completely determined

by the moment αk. As the moments for µ and ν agree then ϕ(k)(0) = ψ(k)(0). Then from (5),

ϕ(s) =

∞∑
k=0

sk

k!
ϕ(k)(0) =

∞∑
k=0

sk

k!
ψ(k)(0) = ψ(s)

as desired. To extend this equality beyond (−r, r) now consider t = r− ε for any small ε > 0.
As ϕ and ψ are identical on (−r, r) then all derivatives agree at r− ε (and similarly, −r+ ε).
Once more for any |s| < r, from (5) we have that

ϕ(r − ε+ s) =
∞∑
k=0

sk

k!
ϕ(k)(r − ε) =

∞∑
k=0

sk

k!
ψ(k)(r − ε) = ψ(r − ε+ s)

and similarly for −r + ε − s, hence ϕ and ψ must agree on (−2r, 2r). Inductively, ϕ = ψ on
the whole of R. As characteristic functions determine the measure, the result is proven.

Exercise 2.4.

Answer the following:

1. Is the space of continuous functions f : X → R measure separating?

2. Give sufficient conditions for the space of continuous and compactly supported functions
f : X → R to be measure separating.

Proof. We answer the questions in turn:

1. Suppose that for every continuous f : X → R and for any probability measures µ, ν, we have
that ∫

X
fdµ =

∫
X
fdν,

then in particular the equality is true for all bounded and uniformly continuous f : X → R.
Thus by Theorem 2.2.2 µ = ν, so the collection of continuous functions is measure separating.
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2. Our conditions are that X is complete, separable, and a finite dimensional normed vector
space. The idea is to use Theorem 2.2.5 for M the space of continuous and compactly
supported functions. Thus, it is sufficient to prove thatM is an algebra of bounded continuous
functions separating points. FirstlyM is an algebra as the pointwise product of two compactly
supported continuous functions is again continuous and of support within the union of their
corresponding compact supports (which is again compact). Boundedness and continuity are
immediate from continuity on a compact space. It only remains to show that M separates
points, so take any x ̸= y ∈ X . Consider the closed ball of radius d(x,y)

2 centred at x, B̄ d(x,y)
2

(x),

and define f : X → R by

f(z) =


d(x,y)

2 − d(x, z) if z ∈ B̄ d(x,y)
2

(x)

0 otherwise.

Clearly f is compactly supported as closed balls are compact in finite dimensional normed
vector spaces, and it is also continuous as the distance function inside B̄ d(x,y)

2

(x) is continuous

and f is null on the boundary of B̄ d(x,y)
2

(x) so the extension to zero outside of this ball is

continuous. So f ∈M and satisfies that f(x) = d(x,y)
2 , f(y) = 0 as required.

Exercise 2.5

Let X be a normed vector space. Consider the dual space X ∗ of all continuous linear functionals
f : X → R. Prove that X ∗ separates points.

Proof. Take any x ̸= y ∈ X . We construct a continuous linear functional f on A := span(x, y)
separating x and y by considering the linear relationship between these points across three different
cases:

1. One of x or y is zero, assume x = 0, so define f(ay) = a. Then f(x) = 0, f(y) = 1.

2. There exists a λ ̸= 0, 1 such that x = λy, so define f(ax) = a. Then f(x) = 1 and f(y) =
λ ̸= 1.

3. x and y are linearly independent, so define f(ax+ by) = a. Then f(x) = 1, f(y) = 0.

In all cases we have constructed a continuous linear functional f on A such that f separates points.
By the Hahn-Banach Extension Theorem there exists a continuous linear functional f̃ on X such
that f̃ = f on the subspace A. In particular f̃ ∈ X ∗ and separates x and y, concluding the proof.

Exercise 2.6

Let M be a collection of functions f : X → R. Define M2 to be the collection of functions
ϕ : X 2 → R given by

M2 := {ϕ : ϕ(x, y) = f(x)g(y) some f, g ∈M} .

Suppose that M separates points in X .

1. Does M2 separate points in X 2?
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2. Suppose that M is an algebra of functions. Construct a larger algebra H, that is f ∈ M
implies that f ∈ H, such that H2 separates points in X 2.

Proof. We answer the questions in turn:

1. No; take X = R and M to contain the single function f(x) = x. This is point separating by
definition. There is only one element ϕ of M2, given by ϕ(x, y) = f(x)f(y) = xy. For any
x ̸= 0 consider (x, x), (−x,−x) ∈ R2. Then ϕ(x, x) = x2 = ϕ(−x,−x) hence M2 is not point
separating.

2. The hint is in the notation! As in Theorem 2.2.5, H = {f + a : f ∈M, a ∈ R} is an algebra
of functions containing M . We now show that H2 is point separating in X 2, so take any
(x1, y1) ̸= (x2, y2) ∈ X 2. At least one of x1 ̸= x2 or y1 ̸= y2 must be true, so suppose
x1 ̸= x2. As M is point separating there exists an f ∈ M ⊂ H such that f(x1) ̸= f(x2). As
H contains all constant functions it certainly contains g such that g(x) = 1 for all x ∈ X .
Then f(x1)g(y1) = f(x1) ̸= f(x2) = f(x2)g(y2) as required.
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